
The NewtonOS Communication 
Infrastructure

Endpoints, Transports and Routing

Eckhart Köppen



Introduction

• Why this talk?

• What is covered, what not?

• “Working mode of a hacker”

• Feel free to interrupt and ask!



My Motivation

• Bad handwriting – need to get data onto the Newton 
somehow else

• Connected world – phones, desktops, servers, ...

• Free GPRS connectivity!

• Free test phones!



Covered Topics

• Routing is quite complex

• Will cover only basics of sending and receiving

• Left out are e.g. print formats, application specific actions

• Briefly touch low level implementation topics

• Whatever comes to your mind!



Words of Caution

• The Newton is an abandoned platform – excellent 
documentation, but some parts are not covered

• Terminology in undocumented areas might differ

• Working mode: try yo figure out as much as needed, not 
more – inconsistencies, unexplained areas or errors are to 
be expected

• If in doubt, ask among developers



An Example

• Sending a Names entry to your mobile phone

• High level steps:

• Pick the format for sending

• Pick a transport method

• Identify the receiving device

• Open a connection

• Send the data

• Close the connection



Routing

• First step is choosing a data format: plain text or vCard?

• List of format choices defined by the type of the data

• Types are referred to as “classes”

• The class is always part of the data object

• A “Route Script” is responsible for the formatting, it claims 
that it can handle specific classes

• List of registered “Route Scripts” checked, those which 
support the current data type are listed as format choices in 
the Route Slip



Routing Result

• The Names entry will be formatted as a vCard, but the 
underlying type is text

• Other types (or classes) are e.g. views for printing or binary 
data

• The Route Script defines which data format (text, views or 
binary) it produces



Transports

• Now what to do with the chosen data format?

• The system checks how the data format can be transported

• “Transports” are responsible for taking data and sending it

• A Transport defines which data types it can handle

• Data types relevant here are the ones produced by the 
Route Scripts

• System searches list of transports for matching ones

• Transports usually implement protocols, so lets transfer the 
vCard over OBEX



Endpoints

• Transports need a physical connection

• Endpoints know all about that, this is the “wire” level

• Endpoint functionality is to send raw data

• OBEX in this example is interesting as it can run over 
different “wires”

• Here we finally cross into the low-level NewtonOS (more 
later)



Putting Things Away

• Receiving data is quite different

• Common parts are Endpoints (”Wires”) and Transports 
(”Protocols”)

• Data will end up in the Inbox

• Route Scripts are not involved

• Instead, applications register for different data types

• The initial data type is set by the receiving Transport

• In OBEX, the data type can be part of the protocol

• File extensions can also be used



What Makes This So Special?

• Ideal split of the responsibilities for adding functionality

• Easy to add e.g. new data formats

• No dependencies between the components

• Added functionality available for all related parts – new 
data formats can be used over all transports

• Nothing comparable on mainstream platform, data is boxed 
in

• Data on the Newton is easily accessible (Names, Dates, 
Notes, ...) and can be reused



The Example Refined

• How are these things implemented?

• Route Scripts: IC/VC

• Transports: Neo

• Endpoint: Blunt



Routing – IC/VC

• IC/VC is a collection of route scripts and can also handle 
putting away items from the Inbox

• It registers to handle Names and Dates data types

• Output of the route scripts is plain text

• Every transport which can handle plain text can now send 
e.g. vCards

• Putting away is possible for vCard and iCal data, but the 
target applications are unfortunately not Names and Dates

• Easier to implement this way

• More a UI problem



Transport – Neo

• Neo implements parts of the OBEX protocol as a client and 
server

• OBEX is independent of the “wire” level

• Much code reused between the Bluetooth, IrDA and TCP/IP 
OBEX implementations

• Only significant differences are which Endpoint type is used – 
more more precisely, which Comm Tool is involved



Endpoint – Blunt

• Blunt does not directly implement an Endpoint

• Endpoints are also high level constructs

• They are layered on top of the actual physical connection 
components, the Comm Tools



Blunt as a Comm Tool

• The low level NewtonOS is quite different from the 
NewtonScript world, is is a whole set of new and 
undocumented concepts

• Some similarities in concepts to MacOS before X

• Blunt is realized as a CommTool, using a generic serial chip 
interface

• A specific serial chip is chosen on initialization, the system 
wide setting is done in “Bluetooth Setup”



References and Documentation

• IC/VC, Neo, Blunt: http://40hz.org/

• Blogging the hacking efforts: http://40hz.org/mottek/

• Mandatory documentation: http://www.unna.org/unna/
development/documentation/

• Strongly recommended: Programming for the Newton Using 
Macintosh by McKeehan/Rhodes (also on UNNA!)

• Advanced but good: Wireless for the Newton by McKeehan/
Rhodes


